

Using Machine Learning Algorithms and Wearable Technology for the Early Detection of Postoperative Complications After Cardiothoracic Surgery

Meghan McCarthy¹, Jorind Beqari¹, Joseph Powell², Jacob Hurd¹, Danny Wang¹, Alexandra Potter¹, James Cranor¹, Deepti Srinivasan¹, Xiao Li², Chi-Fu Jeffrey Yang¹

INTRODUCTION & OBJECTIVE

Accurate and easy-to-implement methods to detect complications before symptom onset after cardiothoracic surgery are needed.

The objective of this pilot study was to evaluate whether a machine learning algorithm—previously developed for the early detection of Covid-19could be extended to the early detection of postoperative complications after cardiothoracic surgery.

METHODS

Design: Prospective observational cohort study conducted from July 2021 to February 2023

Inclusion Criteria: Patients aged 18 years or older scheduled to undergo cardiothoracic surgery for heart and lung disease.

Exclusion Criteria: Individuals with mental capacity and/or cognitive impairment, specific comorbidities, and/or not owning a smart phone or having an email address.

Wearable Data: Patients were provided with a Fitbit Charge 4 or 5 device, and wore the device for at least 1 week prior to surgery and 90-days postoperatively.

Clinical Data: Patient demographics and pre-, peri-, and post-operative data were collected from electronic medical records. A modified version of the EuroQoI5D18 (EQ-5D) daily survey was administered

This R01-funded (R01 HL159170) clinical trial is registered with the National Institutes of Health under **NCT04824066**

METHODS CONTINUED: NIGHTSIGNAL ALGORITHM

Algorithm Design: Uses a deterministic finite state machine (FSM) based on overnight resting heart rate to detect abnormal increases in resting heartrate.

Alerts

- cumulative baseline RHR
- Yellow Alert a patient's average RHR on a certain night between 3-4 bpm compared to cumulative baseline RHR
- Red Alert a patient's average RHR on a certain night greater than 4 bpm compared to cumulative baseline RHR

OPERATIVE CHARACTERISTICS

¹Massachusetts General Hospital, Boston, MA ²Case Western Reserve University, Cleveland, OH

• Green Alert (Normal) - a patient's average RHR on a certain night within 3 bpm compared to

THORACIC (N=24)

- 29.2% VATS Lobectomy
- 25% Robotic Lobectomy
- 16.7% Robotic Segmentectomy
- 12.5% VATS Wedge Lobectomy
- 8.3% VATS Segementectomy
- 8.3% Robotic Wedge Resection

<u>CARDIAC (N=32)</u>

- 37.5% Open Valve Replacement
- 21.9% Non-robotic Minimally Invasive Valve Repair
- 15.6% Open Valve Repair
- 6.3% Aortic Arch Repair
- 6.3% Non-robotic Minimally Invasive Valve Replacement
- 6.3% Other
- 3.1% Coronary Artery Bypass Graft
- 3.1% Robotic Valve Repair

